首页 / 经验 / 考研数学全年的学习计划

考研数学全年的学习计划

  数学复习具有基础性和长期性的特点,数学知识的学习也是一个长期积累的过程,我们需要制定好一个计划。小编为大家精心准备了考研数学全程学习规划参考资料,欢迎大家前来阅读。

  考研数学全程学习规划点拨

  一、学习阶梯划分

  1.一阶基础全面复习***3月-6月***

  2.二阶强化熟悉题型***7月-10月***

  3.三阶模考查缺补漏***11月-12月15号***

  4.四阶点睛保持状态***12月16日-考试前***

  二、参考书目:

  必备参考资料:

  1.数学考试大纲

  2.《高等数学》同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。

  3.《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的学生。《线性代数》清华版:适合基础比较的学生

  4.《概率论与数理统计初步》浙大版:基本的题型课后习题都有覆盖。

  5.历年真题。这些试题对于了解考研题型,体会出题思路,把握命题重点,强化答题技巧和训练答题规范有重大意义。考研真题不但要从每道题上符合严格的出题规范,还要从整体上符合预期的难度和区分度,因此整套的真题更能反映命题特点。

  三、复习规划

  1.一阶基础,全面复习***3月-6月***

  学习目标:根据去年考研数学大纲要求结合教材对应章节系统复习,打好基础,特别是对大纲中要求的三基——基本概念、基本理论、基本方法要系统理解和掌握。完成从大学学习到考研备战的基础准备。

  教学思路:按照教材或讲义的顺序逐一讲解考纲所要求的考点,帮助考生梳理知识,通过经典的例题讲解考研数学处理问题的基本思想。

  复习建议:这一阶段主要的焦点要集中精力把教材好好地梳理,要至始至终不留死角和空白,按大纲要求结合教材对应章节全面复习,另外按章节顺序完成教材及相应的配套练习题,通过练习检验你是否真正地把教材的内容掌握了。由于教材的编写是环环相扣,易难递进的,所以建议每天学习新内容前要复习前面的内容,按照规律来复习,经过必要的重复会起到事半功倍的效果。也就是重视基础,长期积累;基础阶段重视纵向学习,夯实知识点。

  2.二阶强化熟悉题型***7月-10月***

  本阶段是考研复习的重点,对成败起决定性作用。大体可以分两轮学习。

  第一轮暑期强化:7–8月

  学习目标:熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧。

  教学思路:强化基本知识,进一步扫清考生知识体系中的“盲点”;归纳考研数学常见的题型,讲解经典的例题,总结解题思路和方法,再通过课堂上及课后大量的练习确保学员对各种解题方法和技巧做到熟能生巧。

  复习建议:参加强化班学习,根据老师课堂讲义认真研读,做到举一反三。这一时期大课老师所教学的例题都是经过严格筛选、归纳,可以说会更准确、更有针对性。在学习过程中对重点、难点一定做笔记,便于下一轮复习。

  第二轮秋季强化:9—10月

  学习目标:通过真题讲解和训练,进一步提高解题能力和技巧,达到实际考试的要求

  教学思路:对近15年的真题分类总结,通过对真题的讲解和综合练习检验考生知识水平与实际考试要求的差距,发现知识漏洞并及时补强。

  复习建议:根据老师课堂所讲真题课后进行专项复习,对考试重点题型和自己薄弱的内容进行攻坚复习,达到全面掌握,不留空白和软肋,让训练达到或稍微超过真题难度。

  3.三阶模考查缺补漏***11月-12月15号***

  学习目标:这一阶段的目标是保住自己在前两个阶段的成果。1、通过对以往学习笔记的复习全面掌握考试要求;2、进行高强度***高于考试强度***的冲刺题训练,进入考试状态,达到考试要求。

  教学思路:模拟考试,让考生提前感受真实的考场氛围;模考分析和解析,帮助考生查漏补缺

  复习建议:建议考生要做到:1、通过做题进行总结和梳理***做题训练应当重点放在按考试要求的套题***;2、复习教材和笔记进行必要的记忆,对基本概念、基本公式、基本定理进行记忆,尤其是平时不常用的、记忆模糊的公式,经常出错的要重点记忆;3、开始进行模拟试题或者真题的实战演练,在这个过程中,注意答卷时间的分配,重视考场心态的调整。

  4.第四阶点睛保持状态***12月15日-考试前***

  学习目标:考前重点题型,应考技巧训练,保持状态

  教学思路:查漏补缺,易错点归纳并解决

  复习建议:多看之前做过的真题,并将自己整理的笔记或总结的重点习题再仔细看看,更佳提高针对性,加深记忆。在此基础上,按照考试时间去做一些强度不太大的模拟题或是真题,保持手感,以免到了考场思路断电,手生。同时还要调整心态,积极备考,以良好的状态到考场。

  四、五点注意问题

  1.强调学习而不是复习。对于大部分同学而言,由于高等数学学习的时间比较早,而且原来学习所针对的难度并不是很大,加上遗忘,现在数学知识恐怕已经所剩无几了。所以,这一遍强调学习,要拿出重新学习的劲头亲自动手去做,去思考。

  2.复习顺序的选择问题。数学这门考试科目包含了三门课程,可能会学完概率忘了微积分,学完了线代又忘了概率,所以要重复复习,要逐渐缩短这种循环周期。我们并不主张三门课齐头并进,毕竟三门课之间还是有所区别的,要学一门就先学精了再继续推进,做成“夹生饭”会让你有种骑虎难下的感觉,到时你反而会耗费更多的时间去收拾烂摊子。至于三门课的顺序,大家可以根据自己的情况选择,没有硬性的规定。

  3.要注意细致深入。学习的过程中一定要力求全部理解和掌握知识点,考试大纲因为不是按照课本的章节次序编写的,所以可以先学习一段时间之后再比照大纲,对知识点的复习情况进行评估。

  4.强调积极主动地亲自参与,并整理出笔记。注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻到第三轮的复习,这样到了最后一轮,我们有了自己整理的笔记,复习起来就会轻松很多。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。

  5.建议学习时间。每年硕士研究生入学数学考试的时间一般都安排在上午,故建议考生们将数学的`复习时间安排在每天早上9:00-12:00***可根据自身情况适当调整,但此时效果最好***。每天至少应安排花2.5-3个小时来复习数学,其中基础阶段要用1.5-2个小时左右的时间理解掌握概念、定义等,用1个小时左右来做习题巩固。对于数学基础较差的同学建议每天再加1个小时的复习时间用来做习题并总结。

  考研数学高数复习注意事项

  高等数学是考研数学内容最多的一部分,大纲规定高等数学部分在数学1试卷中占60%的分数、数学2占80%、数学3和数学4也要占到50%的分数。 所以高等数学这部分是相当重要的,同学们是要重点复习的,在复习过程中有几个问题是需要注意的。

  要明确考试重点,充分把握重点。比如高数第一章“函数极限和连续”的重点就是不定式的极限,我们要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判断连续性的方法。对于导数和微分,其实重点不是给一个函数考导数,而重点是导数的定义,也就是抽象函数的可导性。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,总而言之看上不好处理的函数的积分常常是考试的重点。而且求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。还有中值定理这个地方一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学1里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。一阶微分方程,还有无穷级数,无穷级数的求和***主要是间接的展开法***。其实,重点主要就是这些了。为了充分把握重点,平时应该多研究历年真题,也能更好地了解命题思路和难易度。

  对于各种类型的题目,都要掌握各自的解题方法。比如二重积分的求法,首先要把积分的区域画出来,画清楚各级函数,要确定是X积分还是Y积分,你在这个区域画一条线,如果是X积分你做一条平行X轴的射线穿过这个区域。穿进就是积分的下限,穿出就是积分的上限。一般把这个基本原则掌握了,考试就不会有问题了,题型可以变换但是方法是不变的。

  数学要考高分就要明确数学要考些什么。数学主要一个是考基础,包括基本概念、基本理论、基本运算,数学本来就是一门基础的学科,如果基础、概念、基本运算不太清楚,运算不太熟练那你肯定是考不好的。所以基础一定要打扎实。高数的基础应该着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元微积分的应用,还有中值定理、多元函数、微分、线面积分等等内容,这些内容可以看成那三部分内容的联系和应用,这就是它的基础。数学要考的另一部分是简单的分析综合能力。因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。还有一个就是数学的解应用题的能力。解应用题要求的知识面比较广,包括数学的知识比较要扎实,还有几何、物理、化学、力学等等这些好多知识。当然它主要考的就是数学在几何中的应用,在力学中的应用,在物理中的吸引力、电力做功等等这些方面。数学要考的第四个方面就是运算的熟练程度,换句话说就是解题的速度。如果能够围绕着这几个方面进行有针对性地复习,取得高分就不会是难事了。

  数学复习是要保证熟练度的,平时应该多训练,应该一抓到底,应该经常练,一天至少保证三个小时。把我们平时讲的一些概念、定理、公式复习好,牢牢地记住。同时数学还是一种基本技能的训练,像骑自行车一样。尽管你原来骑得非常好,但是长时间不骑,再骑总有点不习惯。所以经常练习是很重要的,天天做、天天看,一直到考试的那一天。这样的话,就绝对不会生疏了,解题速度就能够跟上去。

  复习数学不能眼高手低,在我们还没有建立起来完备的知识结构之前,一带而过的复习必然会难以把握题目中的重点,忽略精妙之处。题目看懂了不代表这个题目就会做了,其实真正动手就会碰到很多问题,去解决这些问题就是提高自己的过程。只有通过动手练习,我们才能规范答题模式,提高解题和运算的熟练程度,这些都要通过自己不断的摸索去体会。

  考研数学高数知识点梳理

  1.函数、极限与连续。

  求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。

  2.一元函数微分学。

  求给定函数的导数与微分***包括高阶导数***,隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

  3.一元函数积分学。

  计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。这一部分主要以计算应用题出现,只需多加练习即可。

  4.向量代数和空间解析几何。

  计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。

  5.多元函数的微分学。

  判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数***特别是含有抽象函数***的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。

  6.多元函数的积分学。

  二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型***对坐标***曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型***对坐标***曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。

  7.微分方程。

  求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

  总之,数学要想考高分,考生必须认真系统地按照考试大纲的要求全面复习,掌握数学的基本概念、基本方法和基本定理。注意抓题型的解决方法和技巧,不断总结。而这一切的获得,都是建立在大量的做习题的基础上的,但是做习题不仅仅是追求量,还要保证质,所谓“质”,就是彻底理解所做过的每一道题,而这一点通常显的更为重要!

本文来自网络,不代表立场,转载请注明出处:http://www.mintools.net/37948.shtml

xiaolong作者

上一篇
下一篇

为您推荐

发表评论

您的电子邮箱地址不会被公开。 必填项已用*标注

返回顶部