考研数学如何从真题谈微分中找到值定理的复习方向

  考研数学历来选择题丢分很严重,要拿高分,考生必须克服这个难题。小编为大家精心准备了考研数学真题谈微分中值定理的复习规划,欢迎大家前来阅读。

  考研数学透过真题谈微分中值定理的复习目标

  一.注意真题要求

  20xx年的考研数学真题在中值定理这块没有太大变化。考试对数学一,数学二,数学三的要求也是不一样的。数学一和数学二要求理解泰勒定理。这意味着在微分中值定理的考查中,有可能单独考查泰勒中值定理。而数学三方面只是了解,所以数学三的重点还是应该放到罗尔定理和拉格朗日中值定理上面。

  二.真题的题型分析

  通过对2016年真题的分析,我们发现有关微分中值定理的考查一般都是以解答题的形式出现。

  三.真题要求的复习方法

  根据对2016年真题的分析,同学们要完成证明题是需要明晰知识体系的。首先,同学们要掌握极限的保号性,介值定理及费马引理;然后,掌握核心的三大中值定理以及数学一要重点掌握的泰勒定理;最后,掌握积分中值定理。同学们在清楚了微分中值定理所需要掌握的知识体系后,再通过做题总结,证明题就不难了。再次提醒,微分中值定理的证明题一定要自己总结,自己活用体系,这样的话上考场才能达到游刃有余的目的,才能正真的做对题。

  总之,同学们根据真题要求明确微分中值定理的真正重难点,即上面说的基本知识体系。同学们思考证明题一定要有逻辑顺序,注意总结,这样的话,证明题就成为了“加分”题了。

  考研数学选择题丢分原因分析及对策

  选择题丢分原因分析

  第一,同学们学数学,一个薄弱环节就是基本概念和基本理论,内容都很熟悉,但不知道如何运用;

  第二,虽然考研数学重基础,但不是说8道选择题都是很基本的题目,也有些题是有一定难度的;

  第三,考生缺乏对选择题解答的方法和技巧,往往用最常规的方法去做,不但计算量大,浪费时间,还很容易出错,有时甚至得不出结论。

  要想解决以上问题,首先,对我们的薄弱环节必须下功夫,实际上选择题里边考的知识点往往就是我们原来的定义或者性质,或者一个定理的外延,所以我们复习定理或性质的时候,既要注意它的内涵又要注意相应的外延。比如说原来的条件变一下,这个题还对不对,平时复习的时候就有意识注意这些问题,这样以后考到这些的时候,你已经事先对这个问题做了准备,考试就很容易了。其次,虽说有些题本身有难度,但是数量并不多,一般来说每年的8道选择题中有一两道是比较难的,剩下的相对都是比较容易的。最后,就是掌握选择题的答题技巧,这一点非常重要,

  选择题答题方法总结

  ***1***直推法

  推法是由条件出发,运用相关知识,直接分析、推导或计算出结果,从而作出正确的判断和选择。计算型选择题一般用这种方法,这是最基本、最常用、最重要的方法。

  ***2***赋值法

  是指用满足条件的“特殊值”,包括数值、矩阵、函数以及几何图形,通过推导演算,得出正确选项。

  ***3***排除法

  通过举例子或根据性质定理,排除三个,第四个就是正确答案。这种方法适用于题干中给出的函数是抽象函数,抽象的对立面是具体,所以用具体的例子排除三项得出正确答案,这与上面介绍的赋值法有类似之处。

  ***4***反推法

  就是由选择题的各个选项反推条件,与题设条件或已有的性质、定理及结论相矛盾的选项排除,从而得出正确选项。这种方法适用于选项中涉及到某些具体数值的.选择题。

  ***5***图示法

  若题干给出的函数具有某种特性,例如:周期性、奇偶性、对称性、凹凸性、单调性等,可考虑用该方法,画出几何图形,然后借助几何图形的直观性得出正确选项。此外,概率中两个事件的问题也可用图示法,即文氏图。

  考研数学高分做题顺序很重要

  首先是确定做题顺序,可以采用填空、计算、选择、证明的顺序。因为尽管选择题的分数相对要少一些,但它们一般对基础知识要求较高,选项迷惑性大,有时需要花很多时间去分析也难以取舍,而且有些选择题的计算量也是很大的,如果在做题的开始就感觉不顺而花太多时间的话,会影响考试的心理状态。证明题考查的是严密的逻辑推理,难度也比较大。因此,建议这两类题型可以放在后面做,而先做相对简单的。

  一般来说,平时复习的时候要尽量从自己薄弱的方面“榨取”分数,而正式考试时,先通观整个试卷,迅速客观地评估自己的实力,明确哪些分数是必得的,哪些是可能得到的,哪些是根本得不到的,再采取不同的应对方式,才能镇定自若,进退有据,最终从整体上获胜。

  同学们可以先解答填空题,一般讲填空题是基本概念,基本运算题,得分比较容易,当然试题中计算题或者证明题以平时看书或者参加辅导班老师所讲的例题类似的也可以先做;其次做计算题;最后解单项选择题,因为有些单项选择题概念性非常强,计算技巧也比较高,

  求解单项选择题一般有以下几种方法:

  ***1***推演法:它适用于题干中给出的条件是解析式子。

  ***2***图示法:它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。

  ***3***举反例排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函数的情况。

  ***4***逆推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做逆推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。

  ***5***赋值法:将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。

  做选择题的时候,考生可以巧妙地运用图示法和赋值法。这两种方法很有效。同学们平时用得很多,但很多人进考场一紧张就忘了,而用一些常规方法去硬算,结果既浪费了时间又容易出错。

  计算题的题目结果一般不会特别复杂,一旦出现了很复杂的结果,就需要重点检查一下。如果遇到自己不会做和没有把握的题目,千万不要留空白,可以多写一些相关内容来得一些“步骤分”。

  拿到试卷检查无误后先看一下有没有自己熟悉的题,先解决掉自己有把握的再说,省得最后没有时间了把自己会的忽略了。针对数学一,一般而言,考研数学第一道大题填空题基本上全是概念性的题目,计算量不大,考生只要复习过,没有遗漏知识点,基本全都可以很快做出来;第二道大题选择题,其中有三四道题是大家都会做的,还有几道偏难的选择题,一时拿不准可以先放一放,实在不会还可以猜一猜;而第三道、第四道大题,一般来说难度不大,可以先做。历年试题这两道主要是高等数学的基本问题,如极限、偏导数或定积分应用题。接下来的高等数学的题目可能有些难度,如果考生对线性代数和概率统计比较擅长,可以先各做一个大题,这样整个卷面分数就可以达到70分左右,分数线可以通过。

发表评论

登录后才能评论